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Abstract. Nowadays, efficient transport throughout Europe and the world has become a prerequisite for both 

freight and passenger travels. Railway transport still has to improve in EU in order to win market share from roads 

and sea in the future, but it is already an important mean of transport all over Europe. In Lisbon metropolitan area, 

Fertagus was the first private train operating company. This train operating company is running a line between 

Roma-Areeiro and Setubal and has its own maintenance yard. Therefore, optimizing maintenance costs is one of 

the main objectives of Fertagus train operating company. This work presents a mathematical model (which is a 

mixed integer linear programming model) that was implemented in FICO Xpress software. The model was 

validated and illustrated with a small-scale example. This mathematical model gives optimal technical planning as 

an output which reduces the cost of preventive maintenance. Real data was collected during meetings at Fertagus 

maintenance yard and is used in this work to obtain the minimal costs possible for preventive maintenance. Some 

sensitivity analysis is performed on some parameters of the mathematical model. 
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1. Introduction 

In transportation companies, maintenance has a 

critical impact on both safety and availability. 

Indeed, it can be understood that if a vehicle is not 

maintained at all, components would fail more and 

more throughout use.  This is of course not advisable 

as it would reduce availability of the fleet and could 

lead to critical safety issues. Therefore, companies 

have understood that even if maintenance costs 

could be quite high, it would guarantee fleet’s 

availability and would prevent accidents. Both of 

these factors have a major impact on the corporate’s 

image which is something that should be taken into 

consideration. In order to ensure safety, vehicles 

constructors require that preventive maintenance is 

performed within deadlines.  

When it comes to maintenance, there are two ways 

to proceed: it can either be done when the 

maintenance deadline is reached or when a failure 

occurs. The first kind of maintenance is called 

preventive maintenance, while the second is named 

corrective maintenance. So that safety is ensured, 

preventive maintenance interval must be optimized 

in order to keep the failure rate of the vehicle 

components under a satisfactory level. Of course, it 

could be tempting to perform preventive 

maintenance at very small intervals in order to have 

very low failure rates. However, if unnecessary 

preventive actions are performed too often, 

maintenance costs would dramatically increase and, 

moreover, early maintenance can sometimes trigger 

component failure. Thereby, preventive maintenance 

intervals should be chosen wisely by taking into 

account these two factors. As a result, preventive 

maintenance can then be optimized in order to get 

the cheapest maintenance costs possible that still 

fulfil every deadline of the company vehicles. 

Corrective maintenance on the other hand has a 

random nature and is hard to predict and thus hard to 

optimize.  

2. Related Literature  

Haghani and Shafahi (2002) studied a way to 

perform buses’ maintenance mostly during their idle 

time in order to reduce the number of maintenance 

hours for vehicles that are pulled out of their service 

for inspection. The solution of the optimization 

program is a maintenance schedule for each bus due 

for inspection as well as the minimum number of 

maintenance lines that should be allocated for each 

type of inspection over the scheduled period.  

Maróti and Kroon (2007) focused on finding a way 

to allocate to daily service a train that is due for 

maintenance in a maintenance yard far from the train 

current location. The objective is to maximize the 

journeys with passenger on board for a train that is 

due for upkeep. Indeed, if the train goes as an empty 

train to the next maintenance, it would significantly 

increase the cost of the maintenance activity. In order 

to solve this problem, the authors suggest using an 

interchange model which modifies the current plan 

by replacing the regular transitions by combinations 

of interchanges between the former tasks. Of course, 

the point is to lead each urgent train unit to 

maintenance within the deadline.  

Technical planning has been studied by Doganay 

and Bohlin (2010) and their model has been 

extended by Bohlin and Wärja (2015). In this kind of 

planning, the time unit is a week as it is not relevant 
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to have a detailed schedule on more than two weeks 

ahead of the current date. However, knowing how 

many trains would be maintained on a given week is 

valuable information. Indeed, it is useful to verify 

that not too many trains are under maintenance on a 

given week or that enough spare parts are available 

to perform the task. It was shown that taking spare 

parts into account leads to better cost savings, as it 

removes conflicts caused by too many trains 

requiring the same spare part at the same time. In 

Bohlin and Wärja work, inclusions in the 

maintenance tasks are added, i.e. if a task is included 

in another, there is no need to perform both in a row. 

Bazargan (2015) studied how to minimize the cost of 

maintenance and maximize aircraft availability and 

then compared with several possible planning: 

closest to maintenance; furthest to maintenance; 

random maintenance; cheapest next maintenance; 

equal aircraft utilization. This was a study for a flight 

training school, and it is interesting to notice that 

they selected the planning with the smallest number 

of maintenance activities even if it was not the 

cheapest one. It was interesting to realize that 

companies would often select user-friendly solutions 

over solutions harder to implement even if they are 

more optimized. 

Lai, Wang, and Huang (2017) improved the 

efficiency of rolling stock usage and automate the 

planning process. The planners are currently doing it 

manually with a horizon of two days which can lead 

to myopic decisions, far from the optimum plan. The 

main target of the objective function is to minimize 

the optimality gap between the current mileage of the 

train set and the upper limit each day in order to find 

the best planning possible.  

3. Mathematical model definition 

3.1 Indexes 

u  train unit 

t  time unit 

i  maintenance activity 

p  spare part 

l  maintenance line 

3.2 Sets  

U  set of train units u 

I  set of maintenance activities i 

T  set of time units t 

P  set of spare parts p  

Li set of available maintenance lines 

l in the maintenance yard for 

maintenance activity i 

 

3.3Parameters 

 

MA_costi cost of maintenance activity i 

Ti period of maintenance activity i 

(in time unit) 

i amount of work required to 

perform maintenance activity i (in 

man-hour) 

durationi duration of the maintenance 

activity i. (Note; tis calculated as 

the ratio between i and the 

number of men needed to perform 

the maintenance activity i) 

SP_costp cost of having a spare part p per 

time unit t 

ip number of spare parts p needed to 

perform maintenance activity i

  

Rp duration of the maintenance of 

spare part p (in time unit) 

Ap maximum amount of spare parts p 

Oui time interval between last 

maintenance activity i and 

beginning of planning horizon for 

train unit u 

3.4 Constants 

H  planning horizon 

S  shunting cost 

k maximum working load per time 

unit t (in man hours) 

max_time maximum working time per time 

unit t (in hours) 

N number of maintenance activities I 

(Note: it is the cardinality of the 

set I) 

delay amount of time needed to move a 

train from a maintenance line l (in 

hours) 

u1 maximum number of train units 

available 

u2 number of train units needed to 

perform daily service 

The parameter k is calculated as the number of men 

working times the time duration of maintenance per 

day times the number of working days per time unit 

t.  

The parameter max_time is calculated as the time 

duration of maintenance per day times the number of 

working days per time unit t.  

3.5 Variables 

xuitl binary variable set to 1 if 

maintenance activity i is 

performed on train unit u at t time 

unit, and set to 0 otherwise. 

yut binary variable set to 1 if unit u is 

under maintenance at t time unit, 

and set to 0 otherwise. 

Up non-negative integer variable 

corresponding to the minimum 



amount of spare part required to 

perform the technical planning 

  

 

3.6 Objective function 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ ∑ ∑ MA_cost𝑖𝑙 ∈𝐿𝑖𝑡 ∈𝑇𝑖 ∈𝐼 ∗ 𝑥𝑢𝑖𝑡𝑙𝑢∈𝑈 + ∑ ∑ 𝑆 ∗ 𝑦𝑢𝑡𝑡 ∈𝑇𝑢 ∈𝑈 +  𝐻 ∗ ∑ SP_cost𝑝 ∗ 𝑈𝑝𝑝 ∈ 𝑃 +
1

(𝑢1−𝑢2)∗𝑁∗𝐻
 ∑ ∑ ∑ ∑ (𝐻 − 𝑡) ∗ 𝑥𝑢𝑖𝑡𝑙𝑙 ∈𝐿𝑖𝑡 ∈𝑇𝑖 ∈𝐼𝑢∈𝑈           (1) 

 

Subject to: 

∑ ∑ 𝑥𝑢𝑖𝑡𝑙𝑙 ∈𝐿𝑖
 ≥ 1

𝑡+𝑇𝑖
𝑗=𝑡   ∀ 𝑢 ∈  𝑈, 𝑖 ∈ 𝐼, 𝑡 ∈  {1, … , 𝐻 − 𝑇𝑖 + 1}       (2) 

∑  ∑ 𝑥𝑢𝑖𝑡𝑙𝑙 ∈𝐿𝑖
≥ 1      ∀ 𝑢 ∈ 𝑈, 𝑖 ∈  𝐼 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑇𝑖 − 𝑂𝑢𝑖 ≤ 𝐻

𝑇𝑖−𝑂𝑢𝑖
𝑗=1       (3) 

𝑦𝑢𝑡 ≥ 𝑥𝑢𝑖𝑡𝑙     ∀ 𝑢 ∈  𝑈, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑙 𝑖𝑛 𝐿𝑖         (4) 

∑ ∑ ∑ ∑ 𝑖𝑝 ∗ 𝑥𝑢𝑖𝑡𝑙  ≤ 𝑈𝑝   ∀ 𝑝 ∈ 𝑃, 𝑡 ∈ {1, … , 𝐻 − 𝑅𝑝}
𝑡+𝑅𝑝

𝑗=𝑡𝑙 ∈𝐿𝑖𝑖∈𝐼𝑢 ∈𝑈       (5) 

𝑈𝑝 ≤ 𝐴𝑝  ∀ 𝑝 ∈ 𝑃            (6) 

∑ ∑ ∆𝑖 ∗ 𝑥𝑢𝑖𝑡𝑙𝑖∈𝐼 ≤ 𝑘    ∀ 𝑡 ∈ 𝑇𝑢∈𝑈  , 𝑙 ∈  𝐿𝑖         (7) 

∑  ∑ 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑖 ∗  𝑥𝑢𝑖𝑡𝑙𝑖 ∈  𝐼  + 𝑑𝑒𝑙𝑎𝑦 ∗ (∑ ∑ 𝑥𝑢𝑖𝑡𝑙 − 1𝑖 ∈ 𝐼𝑢 ∈𝑈 ) ≤ max_time  ∀ 𝑡 ∈ 𝑇, 𝑙 𝑖𝑛 𝐿𝑖  𝑢 ∈𝑈  (8) 

∑ 𝑥𝑢𝑖𝑡𝑙𝑙 𝑖𝑛 𝐿𝑖
≤ 1  ∀ 𝑢 ∈ 𝑈, ∀ 𝑖 ∈ 𝐼, ∀ 𝑡 ∈ 𝑇         (9) 

𝑥𝑢𝑖𝑡𝑙  is binary ∀ 𝑢 ∈  𝑈, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇, 𝑙 𝑖𝑛 𝐿𝑖        (10) 

𝑦𝑢𝑡  is binary  ∀ 𝑢 ∈  𝑈, 𝑡 ∈ 𝑇         (11) 

Up is non-negative integer ∀ 𝑝 ∈ 𝑃        (12) 

 

 

The objective function (1) is the total cost of 

preventive maintenance over a year. It was adapted 

from an objective function found in a paper by 

Doganay and Bohlin (2010) that fitted the objective 

of minimizing all costs of maintenance of trains in a 

railway maintenance yard. This function is 

composed of four different cost components which 

are the maintenance cost - denoted A; the shunting 

cost - denoted B; the spare parts cost - denoted C and 

finally a cost to avoid early maintenance - denoted 

D. The objective function is then A+B+C+D. All the 

cost components are explained in detail in the 

following subsections.  

The maintenance cost A is the cost of doing every 

maintenance task over the planning horizon. Each 

maintenance costs MA_costi were given previously 

as an input; they correspond to the cost of doing a 

specific maintenance task i. The cost component A 

can be expressed as the sum of all the maintenance 

costs of the maintenance activities performed on 

every trains, every line and at every time period until 

the horizon. 

The cost component B is the shunting cost; it 

corresponds to the cost of pulling a train out of its 

regular duty in order to perform maintenance on this 

train. It can be expressed as the sum of the shunting 

cost per week of all trains stopped every week of the 

planning horizon.  

The cost component C is the cost of keeping spare 

parts that need to be kept in good conditions even 

when they are not used. The spare part cost is also 

defined previously by the user; it is commonly 

estimated as a percentage of the initial price of the 

spare part. The cost component C can be set as the 

product of the duration in time units of the planning 

horizon and the sum of the spare part cost times the 

amount of each spare part. It must be highlighted that 

in this model, minimum amount of spare parts 

remains the same throughout the year. Therefore, Up 

is chosen so that it would fulfil all maintenance 

activities on all trains and all time period over the 

planning horizon.  

The last cost component is a term to discourage early 

maintenance as it is both costly and likely to trigger 

some early failure of the components. The cost 

component D can be seen as a penalty if the last 

preventive maintenance before the end of planning 

horizon is performed too early. It is the product of 
1

(𝑢1−𝑢2)∗𝑁∗𝐻
 which is a weighted penalty, times the 

distance between the last maintenance perfomed and 

the end of the planning horizon (𝐻 − 𝑡) ∗ 𝑥𝑢𝑖𝑡𝑙 . The 

closer to the end of planning horizon the 

maintenance activity is performed the smaller the 

penalty cost. The weighted penalty is made of the 

inverse of the product of the total number of 

maintenance activities, multiplied by the planning 

horizon times the number of spare trains; i.e. the 



difference between the number of train units owned 

by the train operating company and the usefull 

number of trains to perform daily service. 

Constraint (2) is imposed in order to have each 

maintenance task i occurring at least once every 

period Ti for all train units, maintenance tasks and 

time periods. 

Constraint (3) states that every maintenance task i 

which is due by the end of the planning horizon H is 

performed at least once. 

Constraint (4) imposes that if xuitl is equal to one, i.e. 

if maintenance activity i is scheduled in a particular 

time period t for train unit u and line l, then yut must 

be equal to one. Therefore, every shunting must be 

taken into account. 

Constraint (5) requires that the number of spare parts 

needed is greater than the greatest number in service 

at any single occasion. 

 

Constraint (6) bounds the number of spare part in 

order to stay under the limit chose by the user. This 

upper bound represents the maintenance yard’s 

storage capacity. 

Constraint (7) limits the total working load 

performed during a week under the maximum 

amount of work that can be done within one time 

unit. In this model, the maximum amount of work is 

not time dependent, which might be changed if the 

simplification is not relevant.  

Constraint (8) makes the maintenance duration on 

each line stays under the maximum amount of 

working time per time unit t (time per day times 

number of working days). A delay, corresponding to 

the time required to move the trains is added. This 

delay is multiplied by the total number of movement 
∑ ∑ 𝑥𝑢𝑖𝑡𝑙 − 1𝑖 ∈ 𝐼𝑢 ∈𝑈  which is the total number of 

maintenance activities performed on all the trains 

minus one; which also is the number of movements 

on a given maintenance line l. 

Constraint (9) imposes that, for each maintenance 

activity i of train u at a given time t is either not 

performed (left hand side equal to zero) or performed 

in a given maintenance line (left hand side equal to 

1). The same maintenance activity i on the same train 

u can only be performed in one maintenance line l.  

Constraint (10) makes xuitl a binary variable for all 

train unit, maintenance activity, time unit and 

maintenance line l 

Constraint (11) makes yut a binary variable for all 

train and time units 

Constraint (12) imposes that Up is a non-negative 

integer for all spare parts 

4. Case study of Fertagus  

In part 4, Fertagus train operating company is 

presented briefly and problem specifications are 

introduced. The parameters of mathematical model 

are displayed in a table with all values given in 

monetary units for the sake of confidentiality. 

4.1 Fertagus, a train operating company 

Fertagus trains run on a line of 54 kilometres that 

crosses the “25 de Abril” bridge; and stop at 14 

stations. Total travel duration between Roma-

Areeiro and Setúbal is 57 minutes and the bridge 

crossing is only 7 minutes long.  

Fertagus is a train operating company whose name 

derives both from "caminhos-de-ferro" and the 

Tagus river's name. It became the first private rail 

operator in Portugal when it won the call for bids for 

the line between Lisbon's city centre and the Setubal 

district area. As a result, it now has a contract that 

ensures availability, cost and duration of travels. As 

it was the first private operator of Lisbon 

metropolitan area, it is interesting to notice that 

availability is part of the contract with Lisbon’s city 

centre. Indeed, in order to optimize maintenance, it 

must be kept in mind that no train can be pulled out 

of service to go to maintenance if there is no backup 

train available. In order to guarantee that this would 

not happen, Fertagus chose to have eighteen trains 

when only seventeen are necessary to perform the 

current operation schedules. The question of whether 

or not this could be done differently is out of the 

scope of the present work and is left for further 

research. However, it might not be necessary to have 

an additional train if instead of doing mileage-based 

maintenance, Fertagus was using a condition-based 

maintenance approach. 

It must be said that as Fertagus does not own the 

railway line, infrastructure charges must be paid to 

the infrastructure manager, IP, and the railway 

infrastructure maintenance is not up to Fertagus. 

This also means that Fertagus trains are not the only 

trains running over the line between Roma-Areeiro 

and Setubal, which might result in technical issues as 

not all trains have the same requirements. Indeed, 

during one of our visits to the maintenance yard, 

Eng. João Duarte told us that since the line started to 

be used by other trains going faster, unusual wear 

was noticed on all the trains’ wheelsets.  

Three meetings with Fertagus staff were scheduled 

and some additional information were given by 

email and phone calls. This work benefited from two 

main contacts, Engineer João Grossinho and 

Engineer João Duarte in the maintenance yard of 

Fertagus. 

Fertagus maintenance yard comprises 10 lines. 

Although they are numbered from 1 to 12, lines 



number 3 and 4 were never built but were designed 

in the original maintenance yard’s plans. Out of 

these lines, only 3 are used to perform maintenance 

tasks, respectively 10, 11 and 12. The other lines are 

used as testing or parking lines. A summary of all 

lines exploitation can be found in Table 1 below. 

 

 

Table 1: Lines of Fertagus maintenance yard 

Line number Use in the maintenance 

yard 

1 Several tests 

2 Several tests 

5 Parking 

6 Parking  

7 Parking  

8 Parking  

9 Cleaning operations & 

conservation cleaning 

10 Maintenance with 

catenary 

11 Maintenance with 

catenary 

12 Maintenance without 

catenary (includes 

pantograph replacement) 

 

4.2 Specific input parameters for MILP 

formulation 

In order to model the case study, some information 

about the maintenance activities were gathered in 

order to have the correct inputs for the parameters of 

the mathematical model. During meetings, Fertagus 

maintenance activities were explained by Eng. João 

Grossinho and Eng. João Duarte and summarized on 

the tables below. While the first one corresponds to 

the maintenance activities scheduled by Fertagus 

maintenance crew; the second table sums up the 

maintenance activities scheduled by a consultancy 

company which provides support for major 

renewals. Because of the way the program was built, 

only the maintenance activities scheduled by 

Fertagus maintenance crew could be taken into 

account. The integration of R1, R2 and R3 major 

renewals in the mathematical model is left for further 

research. 

 

Table 2: Maintenance tasks which are not performed by 

Fertagus crew

 

 

 

 

 

 

Table 3: Maintenance tasks performed by Fertagus crew 

 

The mathematical model’s parameters for the 

Fertagus case study were extracted from the two 

tables above and completed through additional 

meeting; emails or phone calls. All parameters used 

for the Fertagus case study can be found in the 

following tables (Table 4, Table 5, Table 6, Table 7, 

Table 8 and Table 9). 

Table 4: Sets of the mathematical model 

Sets Values 

U {1,...,18} 

I {1,...,16} 

T {1,…,53} 

P {1,…,4} 

 

In Table 4 the sets of Fertagus case study are 

displayed; they are eighteen trains so U is a set of 

integers going from 1 to 18. Furthermore, sixteen 

maintenance activities can be performed in Fertagus 

maintenance yard which implies that I is a set of 

integers from 1 to 16. The planning horizon of the 

technical planning we want to achieve is a year so, 

since the time unit is a week, T is a set of integers 

from 1 to 53. Finally, four different spare parts are 

stored in Fertagus maintenance yard so P is a set of 

integers from 1 to 4. 

 



Table 5: Parameters of the mathematical model depending 

on the maintenance activity i 

 

In Table 5 all parameters depending on the 

maintenance activities i are summarized. The first 

line includes the name of maintenance activity 1 

which is ETS, its cost in monetary units which is 

614,42. Then the period of the ETS maintenance is 

displayed in weeks and is equal to five weeks. This 

means that maintenance activity 1 (called ETS) is 

due every five weeks. Then, both the working load 

and the duration of the maintenance activity 1 are 

given. ETS maintenance is a 10 man-hours 

maintenance activity and lasts 2,5 hours long. 

Because the working load and the duration are linked 

by the relation “working load = duration * working 

men”, it can be deduced that 4 men are needed to do 

maintenance activity 1. Finally, the set of 

maintenance lines where maintenance activity 1 can 

be performed is displayed. It can be read that 

maintenance ETS can be performed either on line 11 

or on line 12 of Fertagus maintenance yard. Indeed, 

it was explained in Table 1 that line 10 and 11 are 

equipped with the same tools and can therefore be 

used for the same maintenance activities. 

Table 6: Parameters of the mathematical model depending 

on the spare parts p 

p SP_typep SP_costp Rp Ap 

1 wheelset 104,17 1 20 

2 trailer bogie 1041,67 0 20 

3 motor bogie 1041,67 1 20 

4 pantograph 416,67 2 20 

 

Parameters that depends on the spare parts p are 

displayed in Table 6. In the first line are given all 

information about the spare part 1; the first piece of 

information is the spare part’s name which is a 

wheelset. Then, the cost of the spare part 1 per week 

is given in monetary units and is 104,17. The next 

parameter is the number of week needed to maintain 

the spare wheelset and its value is one which means 

that when a spare wheelset is sent to maintenance it 

will be unavailable for one week. Finally, the 

maximum number of spare part 1 is given according 

to the maintenance yard storage area. Because 

Fertagus maintenance yard is relatively large, it is 

assumed that storage would not be an issue; this is 

why the maximum number of wheelset is set to 20. 

Here the largest number of spare parts does not 

constraint the solution, it only reduces the number of 

values that the solver will test. Thus, it reduces the 

computational time. 

 

 

 

 

Table 7: Oui parameter of the mathematical model 

 

Initial conditions about Fertagus trains can be found 

in Table 7. The different maintenance activities are 

put in the columns while the different lines 

correspond to different trains. The first line set all the 

initial conditions for train 1. The first value is the 

distance between the last maintenance activity 1 and 

the beginning of the planning horizon and is 4; which 

means that the last maintenance activity 1 (called 

ETS) was performed on train 1 four weeks ago. It 

must be highlighted that all values of Oui can be 

deduced from this table. For example, O23, which 

corresponds to the last time maintenance activity 3 

was performed on train 2, is set to 23 weeks in the 

above table. Therefore, maintenance activity 3 was 

done 23 weeks before the beginning of the planning 

horizon. 

Table 8: ip parameter of the mathematical model 

 

Table 8 summarizes the values of parameter ip 

which is the amount of spare part p required to 

perform maintenance activity i. Sixteen different 

maintenance activities can be done in Fertagus 

maintenance yard; but they do not all require the 

same spare parts. Most of Fertagus maintenance 

activities, such as maintenance activity 1, do not 

need any spare part. This can be seen on the first 

column of the above table, where all values are set to 

zero. It must be said that spare parts are mostly used 

during corrective maintenance in Fertagus case study 

which is why the cost of preventive maintenance is 

lower. However, some maintenance activities of 



Fertagus railway operating company still need spare 

part to be done. It is the case of maintenance activity 

5 that requires one spare part one (which is a 

wheelset) to be performed. 

 

 

 

 

Table 9: Constants of the mathematical model 

Constants Values 

H 53 

S 5000 

k 160 

max_time 40 

N 17 

delay 0.16 

u1 18 

u2 17 

 

All constants of the mathematical model can be 

found in Table 9. First the planning horizon H whose 

value is 53 weeks. The shunting cost is then set to 

5000 monetary units, this value was initially given as 

an approximation and will thus be the subject of a 

sensitivity analysis. The maximal working load k 

which is 160 man-hours is calculated as the product 

of the number of men working in Fertagus 

maintenance yard by the number of working hours 

per day times the number of useful days of the week. 

In the case study it is then, 4 men * 8 hours * 5 (days) 

= 160 man-hours. The maximal working time per 

week is 40 hours and is calculated as the product of 

the number of working hours per day times the 

number of useful days in a week. In Fertagus case 

study it is 8 hours * 5 (days) = 40 hours. It is 

interesting to realize that the maximal working load 

and the maximal working time are related to one 

another with the equation working load = working 

time * number of men. 

5. Results 

In chapter 5 several studies can be found. Firstly, an 

analysis of optimality gap over calculation time; the 

optimality gap mentioned above, is calculated as the 

percentage of the ratio of the difference between the 

value of the objective function and the lower bound 

and the value of the objective function. In the next 

subsections, a sensitivity study of both the shunting 

cost component and the maximal working time per 

week. It should be made clear that the shunting cost 

is the cost related to moving trains to the 

maintenance yard. 

5.1 Analysis of optimality gap as a function of 

calculation time 

As it was said in section 3, when the size of the 

problem increases so does the computational time to 

get to the optimal solution. Indeed, if optimality of 

the solution is not taken in consideration, then a 

feasible solution can always be found within few 

minutes. However, if optimality of the solution is 

important, the optimality gap corresponding to the 

feasible solution is an indicator of the optimality of 

the solution. The closer the optimality gap is to zero, 

the better the solution is. When the size of the 

problem is relatively small (such as 752 variables), 

the optimal solution can be found in a tenth of a 

second as it was the case in the illustrative example. 

Nevertheless, in the case of Fertagus the 

computational time is much larger, due to a 

significant increase of the size of the sets. It is then 

interesting to study the evolution of the optimality 

gap with respect to computational time in order to 

know when the solution can be considered as 

satisfying. Indeed, most of the time the calculus is 

stopped before the exact solution is reached (i.e. 

when the optimality gap is 0) in order to save 

computational time.  

In this analysis, the computational time was 

increased from 1 minute to 24 hours, and the graph 

of optimality gap versus computational time can be 

found in Figure 1. The goal of this study is to be able 

to select the smallest computational time whose 

corresponding optimality gap is acceptable. It can be 

seen on the graph that after a calculation time of one 

hour, a optimality gap around 0,6% is achieved. 

When computational time is increased to one day, 

the optimality gap becomes slightly less than 0,5% 

which is better but may not worth the additional time 

spent to minimize the cost. Consequently, the 

computational time was chosen to be set to one hour 

for all further analysis in this chapter. 

The detailed values of both the computational time 

and the associated optimality gap can be found in 

Figure 1 and Table . 

Table 10: Values of computational time and 

corresponding optimality gap 

Computational time (s) Optimality gap (%) 

61 (1 min) 2,67 

304 (5 min) 2,67 

601,4 (10 min) 2,30 

913,5 (15 min) 1,55 

1798,5 (30 min) 0,97 

2701,2 (45 min) 0,97 

3602,6 (1 h) 0,63 

5411,9 (1h30) 0,63 

18014,6 (5 h) 0,63 



36006,9 (10 h) 0,63 

86405 (24 h) 0,60 

 

 
Figure 1: Graph of optimality gap with respect to 

computational time 

In can be seen in Figure 1 that the variation of the 

optimality gap is a lot faster at the beginning. Indeed, 

during the first hour, the optimality gap decreases 

from 2,67% to 0,63% while in the remaining twenty-

three hours it only decreases from 0,63% to 0,6%. 

This graph proves that the longer the computational 

time, the smaller the optimality gap but it must be 

highlighted that the evolution is not linear. 

Analysis of maintenance costs as a function of 

shunting cost component 

In Fertagus case, the shunting cost component value 

is set to 5000 monetary units. However, this cost was 

provided as an approximated value so it was worth 

doing a sensitivity analysis on this parameter of the 

mathematical model. In order to study the influence 

of the parameter on the total cost of the maintenance, 

the shunting cost component is varied from 4500 

monetary units to 5500 monetary units. This 

corresponds to an increase and a decrease by 10% of 

this cost component.  

The graph of the total maintenance cost with respect 

to the shunting cost component can be find in Figure 

2. This graph is however not easy to analyse which 

is why another graph can be found in Figure 3 

representing the variations in percentage of the total 

maintenance cost induced by the variations in 

percentage of shunting cost component. 

Figure 2: Total maintenance cost versus shunting cost 

component 

It can be seen in Figure 2 that the evolution of the 

total preventive maintenance cost is similar to a 

linear evolution between 4500 and 5500 monetary 

units. The linear curve displayed on the above figure 

has an equation that is y =18985x + 728178; this 

linear function values have an average difference of 

0,2% with the real values. 

Figure 3: Variation of total cost with respect to shunting 

cost component variations 

Two different curves can be found in Figure 3, one 

is called “regular values and the other is “absolute 

values”. The first one, with “regular values”, 

corresponds to the variation in percentage of the total 

maintenance cost with respect to the variation in 

percentage of shunting cost (between the reference 

value 5000 and the value used in the mathematical 

model). The other curve the “absolute values” 

corresponds to the absolute value of the variation in 

percent of the total maintenance cost with respect to 

the variation in percentage of shunting cost.  

A variation of shunting cost of 2% induces a 

variation of total maintenance variation of 1,3% 

which corresponds to a relation of 0,65 between the 

total maintenance variation and the shunting cost 

variation. In Table  a summary of the relations 

between shunting cost component and total 

maintenance variations. The average value of these 

relations is 0,58 which means that the variation of 

shunting cost component induces a smaller variation 

of the total maintenance cost. 

It is interesting to notice that the “absolute values” 

curve in Figure 3: Variation of total cost with respect to 

shunting cost component variationsFigure 3 is 

symmetric with respect to the y-axis. It means that 

an increase of 3% of the shunting cost component 

will induce a raise on the total cost; and this raise has 

the same absolute value than the diminution of the 

total costs induced by a decrease of 3% in the 

shunting cost component.  

Table 11: Relation between the two variations 

Shunting 

variation 

(%) 

Total 

maintenance 

variation (%) 

Relation 

between the 

two variations 

-10 -5,43 0,54 

-8 -4,12 0,51 

-6 -3,54 0,59 

-4 -2,63 0,66 

-2 -0,90 0,45 

0 0,00 Not relevant 



2 1,30 0,65 

4 2,97 0,74 

6 3,58 0,60 

8 4,46 0,56 

10 5,68 0,57 

 

The relation between the shunting variation in 

percentage and the total maintenance variation in 

percentage can be found in Table 11. The value for a 

variation of zero percent is not considered to be 

relevant as a division by zero would be involved 

otherwise. It is interesting to highlight that all the 

ratio    

 Analysis of total maintenance costs as a function of 

working time per week  

Fertagus preventive maintenance is done in a shift of 

8 hours per day, and five days a week; which 

corresponds to a current maximum working time in 

the maintenance yard of 160 hours/week. In order to 

quantify the impact of the time allocated to 

preventive maintenance, a study is performed to see 

the evolution of total maintenance costs with respect 

to the evolution of the maximum working time. It 

must be highlighted that even if only one value 

changes, it affects two parameters of the 

mathematical model which are k and max_time. 

The graphs on Figure 4 and Figure 5 show the 

variations of the total maintenance costs as a 

function of the variation of the time allocated to 

preventive maintenance per week. The time 

allocated varies from 36 hours to 44 hours; 40 being 

the reference (all values can be found in Table). 

When the time allocated is 36 hours, there is no value 

for the optimality gap nor for the total maintenance 

costs because no feasible solution could be found. 

On the contrary when the time allocated is 44 hours, 

the optimal solution is find in 2445,8 seconds (40min 

and 45 seconds) which means the calculus stops 

before the end of the reference computational time. 

For an allocated time of 42 hours the solution is 

optimal after 2684 seconds (44 min and 46 seconds). 

The reference for the computational time was found 

in the first subsection of this chapter and was set to 

one hour. 

Table 12: Values of optimality gap and total maintenance 

costs for different time duration 

allocated 

man-

hours per 

week 

allocate

d hours 

per 

week 

optimality 

gap after 

one hour 

(%) 

total 

maintenance 

cost 

(monetary 

units) 

36 144 - No feasible 

solution 

38 152 1,84 1701030 

40 160 0,63 1675360 

42 168 0 1659800 

44 176 0 1659750 

 

Figure 4: Graph of optimality gap versus time allocated 

per week 

Figure 5: Graph of total maintenance costs versus time 

allocated per week 

The horizontal axis of Figure 4 and Figure 5 are the 

same which is logical considering that the working 

load allocated and the working time allocated are 

related through the equation working: 

load = working time * number of men. During the 

sensitivity analysis, the number of men do not 

change which explains why only one parameter was 

used to plot the graph of the sensitivity analysis.  

On Figure 4 it can be noticed that the optimality gap 

value is drastically increased when the working load 

is lower than 160 man-hours. If the working load is 

lower 152 man-hours, there is even no feasible 

solution that can be found. There are two possible 

explanations for this; either 160 man-hours working 

load is optimal in Fertagus case study; or the initial 

conditions have a lot of influence on the technical 

planning. Indeed, a maintenance which is done by 

four working men for several planning horizons 

could lead to initial conditions that require a 

preventive maintenance done by four men. 

Therefore, after having performed preventive 

maintenance a certain way for a long time it could be 

difficult to change the way to do things. 

6. Conclusion and future research 

In the final part, the conclusion of the performed 

research can be found as well as some limitations and 

possible further step of the future research. 

6.1 Conclusion 

Optimizing total costs of preventive maintenance is 

of course the objective of every companies since it 

would have a non-neglectable effect on the budget.  

The goal of this thesis was to create a mathematical 

model that would provide an optimal technical 

planning reducing the total preventive maintenance 



costs to a minimum. The mathematical model 

created was adapted to the specific case of Fertagus 

railway operator but can very easily be modified to 

fit to any company’s specifications.  

One of the objectives of this thesis was to prove that 

this program would give the optimal feasible 

technical planning if at least one can be found. It is 

important to underline that whenever a parameter 

was too restrictive, the mathematical model would 

say that no feasible solution could be found. Several 

simulations were made in order to quantify the 

sensitivity of some parameters and the mathematical 

model was considered as satisfying. 

Moreover, it is interesting to realize that the 

mathematical model is able to give a feasible 

solution with a optimality gap of less than one 

percent in less than one hour. Indeed, most company 

would care about the optimality of the solution. This 

is why, even if a technical planning is performed 

once a year, it is still compelling that the 

computational time for a company size calculus 

stays relatively low. 

6.2  Limitations 

This mathematical model enables to find an optimal 

technical planning but it is of course user input 

dependent and this is a major limitation. Indeed, if 

the user inputs do not represent correctly the real-life 

situation, the technical planning could hardly be 

optimal, even if an optimal solution is found. This is 

the case in Fertagus maintenance yard, which means 

that the solution found are actually not the best 

possible. Indeed, some maintenance activities are 

performed by Fertagus maintenance crew, but some 

others (such as R1, R2 and R3) are performed by a 

consultant company. These maintenance activities 

were not taken into consideration and consequently 

the total maintenance cost find by the program 

cannot be the actual optimal one.  

6.3 Future Research 

As said in the previous subsection, all maintenance 

activities performed by a consultancy company are 

not taken into account. In order to provide a total 

maintenance costs which would be more accurate, a 

new cost component will have to be added. This cost 

component should reflect the cost of having these 

maintenance activities done outside of Fertagus 

maintenance yard. It should be made of both a cost 

of unavailability and a labour cost and will have to 

be added to the mathematical model. 

Moreover, even if this thesis provides a first 

approach of an optimized technical planning, it must 

be kept in mind that the cost of preventive 

maintenance represents barely a fifth of the costs of 

corrective maintenance. This means that if a 

company really wants to save costs on maintenance, 

corrective maintenance should really be taken into 

considerations. In Fertagus case, corrective 

maintenance is done every day during eight hours a 

day, right after the eight hours dedicated to 

preventive maintenance. One way of taking into 

account corrective maintenance would be to add a 

corrective maintenance cost component in the 

mathematical model. However, ideally a new 

program should be created since corrective 

maintenance can only be predicted through statistics 

while preventive maintenance has fixed period.  

Finally, it must be said that obtaining an optimal 

technical planning is only the first step. After this, it 

must be verified that the optimal technical planning 

is feasible thanks to an operational planning. Indeed, 

some of the constraints of the maintenance yard 

cannot be implemented in the technical planning 

mathematical model. This highlights the fact that a 

new mathematical model, that would take the 

optimal technical planning as an input, should be 

created. Indeed, with both an optimal technical 

planning and an optimal operational planning found, 

the total maintenance costs of a company would be 

significantly improved. 
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